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We propose the self-organized relaxation process which drives a collisionless self-gravitating system to the
equilibrium state satisfying local virial �LV� relation. During the violent relaxation process, particles can move
widely within the time interval as short as a few free-fall times, because of the effective potential oscillations.
Since such particle movement causes further potential oscillations, it is expected that the system approaches the
critical state where such particle activities, which we call gravitational fugacity, is independent of the local
position as much as possible. Here we demonstrate that gravitational fugacity can be described as the func-
tional of the LV ratio, which means that the LV ratio is a key ingredient estimating the particle activities against
gravitational potential. We also demonstrate that the LV relation is attained if the LV ratio exceeds the critical
value b=1 everywhere in the bound region during the violent relaxation process. The local region which does
not meet this criterion can be trapped into the presaturated state. However, small phase-space perturbation can
bring the inactive part into the LV critical state.
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I. INTRODUCTION

It is well known that collisionless relaxation process plays
a key role in driving the gravitational objects to the equilib-
rium state observed as elliptical galaxies or dark halos in our
universe. Such relaxation process has been well analyzed
with N-body simulations from the context of the formation of
density profile following r1/4 law of elliptical galaxies �1,2�
or dark halo formations after in-falling from the cosmologi-
cal background �3–5�.

As a relaxation process toward such an equilibrium state,
phase mixing and violent relaxation has been proposed as a
collisionless relaxation process, which, if completed, leads a
self-gravitating system �SGS� to the entropy maximum state
called Lynden-Bell distribution �6�. This distribution, how-
ever, cannot directly be applied to three-dimensional open
models, since it has an infinite mass and energy against the
state attained through N-body simulations. Actually, in nu-
merical simulations, the violent relaxation is not completed
and the state reaches the equilibrium state which cannot be
described by the Lynden-Bell statistics, mainly due to the
existence of the particles with positive energy which escape
to infinity �7,8�.

Then how can we characterize such a quasiequilibrium
state in an open system where particles can evaporate infi-
nitely? Recently, we have numerically shown that the bound
states after a cold collapse or cluster-cluster collisions are
virialized not only globally but also locally for a wide range
of initial conditions �9–11�. Such a state with the local virial
�LV� relation is not a general solution for the stationary state
of the Vlasov equation. For example, Plummer’s model is a
unique solution satisfying the LV relation among the class of
polytropes. In addition, it is special among the class, since it

has the unique solution with infinite extension of particles
and with finite total mass �12�. From such viewpoints, Plum-
mer’s model was originally analyzed by Eddington �13� and
was generalized to several families of both analytical and
numerical solutions with anisotropic velocity dispersion
�11,14�.

Provoked by the remarkable characters such as the LV
relation, Eddington tried to show that Plummer’s model is
the local minimum of the H function, but this approach was
not fully successful �13�. So what kind of principle can char-
acterize the LV relation as an attractor? In general, not all of
the stationary state can be explained by the maximum en-
tropy principle. For example, the nonequilibrium state is at-
tained in the system sustained in the energy flow. In such
open systems, energy injection is balanced with the local
energy dissipation.

During the collisionless stage, potential oscillations play a
key role in violent relaxation. Since such oscillations are
induced from the particle movements in the bound region,
the activity of the particle against gravitational potentials is a
key ingredient for the relaxation process. In this paper we
propose the gravitational fugacity which quantifies such par-
ticle activities against gravitational potential. We will also
show that the fugacity can be described as the functional of
the LV ratio, which means that the LV ratio is the indicator
estimating the local activity of particles against gravitational
potential. This means that the collisionless relaxation process
of SGS is induced not from the entropy maximum principle
minimizing the local temperature fluctuation, but rather from
that minimizing local fluctuation of particle fugacity.

In Sec. II, we define the local fugacity of particles as the
generalization of local evaporation rate. In addition, we will
show that the fugacity can be the functional of the LV ratio,
which directly connect the LV ratio to particle activities
against gravitational potential. We will also generalize it to
the case with the anisotropic Gaussian velocity distribution
and show that the local fugacity is sensitive to the LV ratio
but is not so relevant with the anisotropy. In Sec. III, we will
numerically investigate the collisionless relaxation process
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for several initially spherical models and see that the LV
relation is attained for the local region which experiences the
high fugacity state where the fugacity is beyond the critical
value. In Sec. IV, we will see characters of the LV relation
through several tests to find the criterion to achieve the LV
critical state. Finally, in Sec. V, we will summarize our
analysis and comment on the analogy of the LV relation with
the critical state of self-organized criticality �SOC� or the
role of the LV relation from the viewpoints of superstatistics.

II. LV RELATION AS THE STATE WITH CONSTANT
FUGACITY UNDER GLOBAL VIRIAL CONDITION

In general, gravitational relaxation is mainly divided into
two processes. First is the collisionless relaxation process
which is induced not through the particle-particle interaction
but through the oscillation of gravitational potential. Once
the system is globally virialized, the relaxation process is
ceased until two-body interactions are effective and the sys-
tem begins to evolve toward two-body relaxation. The par-
ticle evaporation rate defined as the rate of particles whose
speed exceeds the local evaporation rate is a proper indicator
for such collisional relaxation process, since the evaporation
of particles occurs only through the two-body interaction
during the stationary collisionless stage.

During the stage of violent relaxation, on the other hand,
evaporation rate is not necessarily a key ingredient for the
relaxation process, since the two-body interaction is negli-
gible during the period. In fact, for as long as we examined,
the particles with, positive energy emerged only at the mo-
ment of the maximum collapse with very low initial virial
ratio. However, during the violent relaxation, particles can be
activated through the potential oscillations. The number of
particles which gain energy enough to move far away from
the potential minimum increase even if they cannot escape
infinitely from the gravitational center.

In this section first we define the gravitational fugacity as
the quantity which represents such particle activities against
gravitational potential. Then we will show that the fugacity
can be described as the functional of the LV ratio under the
assumption that the local velocity dispersion is isotropic. Fi-
nally we will also investigate how strongly the velocity an-
isotropy affects the relation between the gravitational fugac-
ity and the LV ratio. We will show that the anisotropy affects
the gravitational fugacity less sensitively than the LV ratio.
This means that the LV ratio becomes an effective indicator
to estimate the particle activities against gravitational poten-
tial.

A. Relation between the LV ratio b and the gravitational
fugacity for isotropic Gaussian velocity distribution

In previous papers �9–11�, we showed that the LV relation
is well realized for cold collapse simulations starting from a
homogeneous sphere. In these simulations, the velocity dis-
tribution turns out to be locally Gaussian with different tem-
perature on each shell after a cold collapse with strong vio-
lent relaxation �16�. Hence, after a cold collapse, the velocity
distribution is locally well approximated by Gaussian with

the velocity dispersion �2�r�� depending on the local position
r�. In this case, the speed v of each particle at the position r� is
governed by the following phase-space density:

f�v,r�� = ��r��� 3

2��2�r��
�3/2

4�v2 exp�−
3v2

2�2�r��
� , �1�

where ��r�� is a mass density at r�. With the velocity disper-
sion �2�r�� and the local potential energy ��r��, the LV ratio is
defined as follows �11�:

b�r��: = − 2�2�r��/��r�� . �2�

Since the total energy of a particle evaporating from this
system must be positive, we can assess the lowest speed vcr
of the evaporating particles,

vcr = �− 2��r�� . �3�

In the local volume dV at r�, the total mass of the particles
whose speeds exceed avcr with the constant value a can be
described as

Ma�r�� = dV��r��Ra�r�� , �4�

where Ra is the rate of the particles whose speeds exceed
avcr, which is described as

Ra�r�� =
1

�
�

avcr

�

f�v,r��dv

= 1 − Erf	a�−
3�

�2 
 + 2a�−
3�

��2e3a2�/�2
, �5�

where Erf�¯� is the error function.
By setting Eq. �2� into the right-hand side of the above

equation, it becomes obvious that Ra is a functional of the
LV ratio b,

Ra�b�r��� = 1 − Erf	a� 6

b�r��

 + 2a� 6

�b�r��
e−6a2/b�r��.

�6�

Note that R1 is identified with the local evaporation rate Rev.
In this case, Ra indicates the rate of the particles which
spread infinitely. When a�1, on the other hand, Ra includes
not only the particles escaping infinitely but also those
trapped in the finite region. For larger value of a, the particle
can move far away from the gravitational center, since Ra
includes the particles with the higher value of kinetic energy
against the absolute value of the local potential. Therefore,
the value of a offers the lower bound of the typical scale La
to which the particle at r� can move away maximally in the
future. As the local temperature increases against gravita-
tional potential, the particle activities are enhanced and the
value of Ra increases for all of the values of a. Hence, we
call Ra gravitational fugacity, since it represents the particle
activities against gravitational potential. From the fact that
Ra is the functional of b in Eq. �6�, the LV relation b�r��=1 is
induced from the global virial condition and the condition
that Ra is constant everywhere �see the Appendix�. This
means that the SGSs self-organize themselves so as to make
the particle activities constant everywhere. In the next sec-
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tion, we will numerically investigate Ra for a=1 /2, since it
is the typical value measuring the particle activities against
gravitational potential. We will show that the LV relation is
attained for the spherical shell where the gravitational fugac-
ity exceeds the critical value R1/2�b=1�.

B. Relation between the LV ratio b and the gravitational
fugacity for anisotropic Gaussian velocity distribution

In the above derivation of the LV relation, we assume that
the velocity distribution is locally isotropic everywhere dur-
ing the violent relaxation process. However, it is well known
that velocity dispersion becomes anisotropic just after a cold
collapse �1�. Hence it seems important to examine how
strongly the gravitational fugacity depends on the anisotropy.
Here in order to ascertain this, we obtain the gravitational

fugacity for anisotropic Gaussian velocity distribution, where
the velocity dispersion in tangential direction is different
from that in radial direction. In the cylindrical coordinates
for velocity space, the phase-space density can be described
as

f�vr,vt,r�� =� 2

�

vt��r��
�t

2�r���r�r��
exp�−

vt
2

�t
2�r��

−
vr

2

2�r
2�r��

� ,

�7�

where vr and vt are radial and tangential velocity compo-
nents and �r

2 and �t
2 : =��

2+�	
2 are velocity dispersion of ra-

dial and tangential components, respectively. The gravita-
tional fugacity for this function can be evaluated as

Ra�r�� =
1

�
� �

vr
2+vt

2

a2vcr

2
f�vr,vt,r��dvrdvt. �8�

Substituting �7� into �8� and using the anisotropy parameter
defined as

�: = 1 −
�t

2

2�r
2 , �9�

the fugacity can be described as the functional of both b and
� as

Ra�b,�� = 1 −
2

�1 − ����
�3 − 2�

3
�3/2�

0

a�6/b
x2

� exp�−
3 − 2�

3�1 − ��
x2�G	��3 − 2��

3�1 − ��
x2
dx ,

�10�

where G�y� : =�−1
1 exp�yt2�dt, which correctly reduces to �6�

when �=0.
As is shown in Fig. 1, Ra, both for the fixed value b=1

and for the fixed value of a, is almost constant as a function
of � except for the larger value of �. In our numerical re-
sults, the velocity dispersion is not highly radially aniso-
tropic at least within a one-half-mass radius �9,11�. Hence we
can roughly say that the gravitational fugacity is mainly de-
termined by the b value in the bound region, and the fluc-
tuation is minimized in the LV relation even if we take ac-
count of the anisotropy of velocity dispersion.

III. SELF-ORGANIZED RELAXATION PROCESS
INDUCED FROM GRAVITATIONAL FUGACITY

FOR N-BODY COLD COLLAPSE

As is shown in our previous papers �9–11�, the LV rela-
tion is attained for several classes of cold collapse simula-
tions. Here in this section, we will first overview the results
of N-body simulations with spherical initial conditions. We
will see that the LV ratio oscillates around the critical value
b=1, then converges to it for the collapse of the initial ho-
mogeneous sphere. For the initial cuspy density profile, on
the other hand, the LV ratio in the central part retains the
lower value.

We will also see that such differences among initial con-
ditions are due to the behavior of gravitational fugacity. Here

(a)

(b)

FIG. 1. �a� Ra for the LV ratio b=1 as a function of �. Each line
represents the case with a=0.3 �dashed�, 0.5 �solid�, 0.7 �dotted-
dashed�, 0.9 �dotted�. For all of the values of a, Ra is almost con-
stant except for the high value of �. �b� Ra for a=1 /2 as a function
of �. Each line represents the case with b=0.6 �dotted�, 0.8 �dotted-
dashed�, 1.0 �solid�, 1.2 �dashed�. For all of the values of b, R1/2 is
almost constant except for the high value of �.
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we estimate the value of fugacity R1/2 by counting the num-
ber of particles whose velocity exceeds the value 0.5vcr on
each shell, without any assumption for the function form of
velocity distribution. For cold collapse simulations from a
homogeneous sphere, we will see the fugacity pass over the
critical value everywhere at the moment of maximum col-
lapse. For the collapse of cuspy density profile, on the other
hand, the central part of the bound region is not so activated
that the fugacity keeps lower than the critical value there.
The LV ratio behaves in the same way as the gravitational
fugacity for both of the simulations.

A. Numerical setting and realization of the LV relation
for several cold collapse simulations

Here we overview the numerical setting of our simula-
tions and our numerical results for the achievement of the LV
relation. For N-body simulations we use the unit of G=M
=rs=1, where M and rs are the total mass and the radius of
initial sphere, respectively, and the initial free-fall time tf f :
=�rs

3 /GM as the time unit for the time-sequence of physical
variables. The simulations are performed on GRAPE-5 or
GRAPE-7 for all of our runs �17�, in which the potential and
force of interaction are softened through the softening length
 using the Plummer softening. As for the initial conditions,
we generate the spatial coordinates of particles randomly
within a sphere so as to follow the initial mass density. The
coordinates in velocity space are generated from the Gauss-
ian distribution whose variance is adjusted according to the
value of Vin. Time step of numerical integration is fixed to
the value for which the total energy is conserved to better
than 10−3.

For the evaluation of the LV ratio, we divide the bound
region composed of the particles with negative energy into
plural concentric shells and measure the averaged value on
each shell between t=5tf f and 10tf f. Fluctuations of LV ratio
during the period are depicted as the error bar in the follow-
ing figures, which represents the rms of LV ratios between
the time intervals. The reliability of our numerical results is
examined by changing the softening length . We found that
the LV ratio b takes the critical value b=1 quite well for
smaller value of �2−6, although it deviates downwards for
�2−6 �Fig. 2�. These results suggest that the LV relation is
well attained through the gravitational interaction as long as
the softening length is sufficiently small. Hereafter we will
fix the softening  to 2−8 and check the dependence of the
achievement of the LV relation on the particle number N and
on the initial virial ratio Vin �Figs. 3�a�–3�c��.

We can see that the LV ratio converges to the critical
value b=1 quite well in the central part of bound region up
to t=10tf f, while it oscillates around it in the outer part,
especially for the warmer collapse with higher initial virial
ratio �Fig. 3�a��. When we increase the particle number for
cold collapse simulations with lower initial virial ratio, we
can see that the LV ratio deviates from the critical one up to
t=10tf f, although it is not fluctuated �Fig. 3�b��. We can
speculate that this deviation comes from the radial instabili-
ties for cold collapse characterized as the spiral arms in
phase space �15�. As the authors showed in the paper, such a

spiral structure is not stable but rather dissipative. In fact, we
can numerically ascertain that the LV ratio approaches the
critical value as the time elapses �Fig. 3�d��.

For the simulations of power-law density profiles, on the
other hand, LV ratio keeps the lower value for a long period
especially in the central part of the bound region for steeper
density profile �Fig. 3�c��. In fact, we can see that the LV
ratio does not pass over the critical value for the shells inside
0.1 Mtot even at the moment of the maximum collapse �Fig.
4�b��. This is a remarkable difference from the case with
initial homogeneous sphere, where LV ratio passes over the
critical value everywhere at the moment of the maximum
collapse and the LV relation is attained �Fig. 4�a��.

B. Time evolution of local fugacity for N-body simulations
starting from a homogeneous sphere

For the case starting from a homogeneous sphere with
vanishing virial ratio Vin=0, R1/2 passes over the critical
value R1/2�b=1� at the moment of maximum collapse on all
of the shells �Fig. 5�. Once it passes over, it turns out to be
reduced, because the particles are too activated to stay there
and turn to spread out against gravitational potential. This
seems plausible, because just after the moment of maximum
collapse, the particles efficiently begin to spread out from the
inner region to the outer region by climbing up the potential,
because of their high kinetic energies. This state with exces-
sive kinetic energy can be quantified as the high value of
gravitational fugacity. Since they lose the kinetic energy as
they go up the potential hills, the local fugacity turn out to be
reduced. If the averaged fugacity becomes lower than the
averaged value, they begin to increase. Hence, the oscilla-
tions of fugacity occur until the local fugacity at each posi-
tion is balanced with each other. Finally it settles down to the
distribution consistent with the LV relation b=1.

We can see that the convergence to the critical value is
very fast for all of the shells in the case with smaller particle
number �Fig. 5�a��, while it becomes slower for the outer
shell in the case with larger particle number �Fig. 5�c��,
which is because of the surviving of a shock created at the

M / Mr tot

ε=2-4

ε=2-6

ε=2
-8

ε=2
-10

M
/M

r
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t
b

(
)
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1.5

2

FIG. 2. �Color online� The LV ratio averaged between t=5tf f

and t=10tf f derived from a homogeneous sphere with N=5000 and
initial global virial ratio Vin=0.0 for several values of softening
length . Each line represents the LV ratio for =2−4 ,2−6 ,2−8, and
2−10, respectively. The LV ratio for =2−4 deviates from a critical
value b=1 around the central part of the bound region.

SOTA et al. PHYSICAL REVIEW E 77, 051117 �2008�

051117-4



maximum collapse. Therefore, such a deviation fades down
as the time elapses.

We can also investigate the warmer initial conditions with
initial virial ratio Vin=0.1,0.3,0.5 �Fig. 6�. As the initial
virial ratio is higher, fugacity on each shell oscillates with a
longer time interval. This is because the density of the cen-

tral core becomes lower for warmer collapse. Since the time
scale of the oscillation is determined by the free-fall time
determined by the value of the central density, we need to
wait longer for a warmer collapse until it settles down to the
stationary state.

C. Time evolution of local fugacity for N-body simulations
starting from a cuspy density profile

Next we will investigate the initial cuspy density profile,
where the LV ratio becomes less than 1 in the innermost part
of the shell, even after the system settles down to the station-
ary state.

Here we will compare the time evolution of fugacity on
several shells. Gravitational fugacity certainly synchronizes
with the LV ratio b and keeps lower in the central part �Fig.
7�. The fugacity at the innermost shell does not pass over the
critical value R1/2�b=1�, neither does the LV ratio �Fig. 4�.
We also checked that the Ra does not pass over the critical
value Ra�b=1� for a�0.5. This means that the particles in
the central region do not spread out to the outer region but
stay around the center, which prevents any part of the bound
region from realizing the LV relation. This state with exces-
sive potential energy in the central part is highly stable, since
it is located in the central core and isolated from the outer
part.

IV. CHARACTER OF SELF-ORGANIZED EQUILIBRIUM
STATE FROM THE VIEWPOINT

OF THE LV CONDITION

In Sec. II, we found that local gravitational fugacity de-
pends on the local position only through the LV ratio b.
Hence we can naturally judge the activity of the local region
through its LV ratio b. That is, if some parts of the region
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FIG. 3. �Color online� �a� The
LV ratio averaged between t=5tf f

and t=10tf f derived from a homo-
geneous sphere with N=5000 and
initial global virial ratio Vin

=0.0,0.1,0.3,0.5. �b� The same as
�a� but with N=5000,214

�=16 384� ,217�=131 072� and Vin

=0.0. �c� The same as �a� but from
spherical density profile ��r−�

with exponent �=0, 1, and 2. �d�
Snapshots of the LV ratio from a
homogeneous sphere with N=217

and Vin=0.0. Four snapshots at t
=3, 5 , 10, and 20tf f are
depicted.
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FIG. 4. �Color online� Time sequence of LV ratio b on fixed
shell for cold collapse simulations with N=5000 and Vin=0.0 �a� for
homogeneous density profile and �b� for cuspy density profile with
�=2. For both of the figures, the bound region is divided into 10
shells and the b value on the first, fifth, and tenth shells are
depicted.
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take b lower than 1, their activities are less than the averaged
value, while if they take b higher than 1, they are more
activated.

For the initial cuspy density profile with steeper configu-
ration the central part of the system is not driven to the state
with LV relation, but is trapped to the quasiequilibrium state,
because it stays in the state with b�1. This state may or may
not be stable under the perturbation in phase space. In cos-
mological simulations, this cuspy density profile has com-
mon characters with the equilibrium state attained as well as
the lower temperature and power-law phase-space density
�5,18�. In such cosmological settings, there are a large num-
ber of such cuspy halos moving and interacting with each
other. Since each of them is influenced by the gravitational
forces from other nearby halos, it is worth examining the
robustness of such a quasiequilibrium state which does not
satisfy the LV relation. Hence, in this section, we examine
the stability of both the LV equilibrium state and the quasi-

equilibrium state especially from the viewpoints of the LV
relation.

A. Self-adjusting mechanism through the enhancement
of activities for the state with b�1

First, we examine a cuspy density profile with the expo-
nent �=2.0 for several initial virial ratios �Vin
=0.0,0.5,1.0�. As is shown in Fig. 8, b�Mr� takes the mini-
mum value at the center of mass and monotonically increases
toward outside for these initial distributions. Hence, the par-
ticle activities become lower and lower toward the center of
mass. Starting from these initial conditions �Fig. 8�a��, we
can get the equilibrium state where the central part of b�Mr�
is lower than the critical value �Fig. 8�b��. During this pro-
cess, the outer part particles tend to spread out because of the
high activities while the inner parts tend to collapse because
of the lower activities. Hence they do not mix themselves but
keep their inner part isolated from the outer part.
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FIG. 5. �Color online� Time evolution of gravitational fugacity
R1/2 on each shell for the N-body simulations starting from a ho-
mogeneous sphere. Each line represents the value on the shell with
the mass ratio Mr /Mtot=0.05 �red�, 0.25 �green�, 0.5 �blue�, 0.75
�pink� with �a� N=5000, �b� N=214�=16 384�, �c� N=215�
=32 768�. The horizontal red line represents the critical value
R1/2�b=1�.
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On the other hand, if we enhance the LV ratio for the
innermost shell up to one, we can enhance the activity of
particles against gravitational potential. In this case, not only
at the central shell but also at several shells in the inner part,
the LV ratio exceeds the critical value at some future mo-
ment, which leads to the LV critical state almost everywhere
in the bound region �Fig. 8�b��.

From these empirical results, the cuspy density profile
turns out to be unstable against the fluctuations which acti-
vate the central part of the bound region. From such activa-
tions, the system begins to evolve toward the critical state
satisfying the LV relation. This means that the state of the
cuspy density profile is presaturated and can be evolved to
the saturated state satisfying LV relation, against the pertur-
bation which causes strong particle activities in the central
part.

B. Robustness of the LV critical state
against the LV perturbations

Next, we examine the stability of the LV equilibrium state
against the deviations from b=1. Here in order to see this
character, we shift the b value of one selected shell for the
LV critical state by increasing or decreasing the velocities for
the particles in the critical shell at the same rate. This means
that the activity of each shell is slightly different from the
averaged one. Then we can examine the dissipation of the
particles by tracing their positions in later times �Fig. 9�.

When we increase the LV ratio b, the fugacity Ra is en-
hanced and the particles are expanded to the outer shell and
the system settles down to the state with b=1 everywhere
�Fig. 9�a��. On the other hand, when we decrease the LV

ratio, the fugacity is reduced and the particles fall down to
the inner shell and the system again goes back to the state
with b=1 everywhere �Fig. 9�b��. Hence the critical state
with b=1 is stable against the shift of the local activities.

V. CONCLUDING REMARKS

In this paper, we propose the gravitational fugacity which
represents the activity of particles against gravitational po-
tential. We also show that the gravitational fugacity at each
local region is determined directly by the LV ratio at the
region. Hence we can pose the physical meaning on the LV
relation as the condition that the local activity of particles are
balanced with each other on any local region. In fact, we
showed that the LV ratio b oscillates around the critical value
b=1 and settles down to it when the LV relation is achieved.
Especially we found that the LV relation is attained when the
LV ratio passes over the critical value b=1 everywhere in the
bound region at least once before the system reaches station-
ary equilibrium state. Hence, the SGS is self-organized to-
ward the critical state with b�r��=1 under the condition that
the system passes over the critical state b=1 everywhere.
The gravitational fugacity Ra synchronizes with b and con-
verges to the critical value R1/2�b=1�, when LV ratio passes
over the critical value b=1.

In the cold collapse process starting from a homogeneous
sphere, the SGS starts from a state with low fugacity every-
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FIG. 7. �Color online� Same as Fig. 5 but for the initial density
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where. Both the LV ratio and the fugacity pass over the criti-
cal value largely everywhere at the moment of the initial
collapse, which causes violent relaxation. On the other hand,
in the cold collapse process starting from a cuspy density
profile, LV ratio does not pass over the critical value in the
central part of the bound region and most particles stay there
until the system reaches the quasiequilibrium state. In this
case, the gravitational fugacity Ra with a�0.5 does not pass
over the critical value Ra�b=1�. This is because most par-
ticles in the central part fall down into the deep potential well
induced from the outside particles. In this case the system
stays in the low fugacity state and never reaches the state
with the LV relation. Hence we can divide the collisionless
relaxation process into two categories: One admitting that
the LV ratio passes over the critical value b=1 everywhere in
the bound region and another which does not. The former
self-organizes itself so as to minimize both the LV ratio and
the local fluctuation of the gravitational fugacity as much as
possible.

This self-organized process with the condition b�1 re-
minds us of the self- organized criticality �SOC� in sandpiles
�19�. In sandpiles, avalanches occur whenever the slope ex-
ceeds the critical value. In the self-organized process in SGS,
particles are well activated before it reaches the state with the
LV relation. Such activated particles tend to spread out ef-
fectively, which may correspond to the avalanche in sand-
piles. Hence it seems worth examining the character of the
SGS self-organized process from the viewpoint of SOC,
which is characterized by the scaling behavior. Such similari-
ties of the self-organized process with SOC will be well ana-
lyzed in our upcoming paper.

In our previous paper �16�, we showed that the quasiequi-
librium state attained through cold collapse simulations in
SGS can be characterized as the velocity distribution super-
posed with Gaussian distribution with different local velocity

dispersion corresponding to the local temperature. The LV
relation indicates that the velocity dispersion normalized
with the local potential becomes constant and independent of
the position. Hence, from the viewpoints of statistical me-
chanics, we can say that the system settles down not to the
isothermal state with constant temperature but to the quasi-
equilibrium state with constant pseudotemperature normal-
ized with potential. In this critical state, particles can move
around the region in different temperatures and reach the
equilibrium state. Superstatisics is proposed as such a model
superposing the different temperatures although they seem to
lack theoretical derivation from the dynamical process �20�.
SGS self-organized relaxation may give the hint for explain-
ing the superstatistics from more fundamental dynamical
viewpoints.

In cosmological simulations, the stable stationary solution
exists for the Jeans equations under the assumption that the
� /�3 follows the scaling law. This solution is special in that
it has the property that particles spread infinitely but the total
mass of the bound region is finite �5,18�. In fact, this station-
ary solution can describe the density profile, which was
originally proposed by Navarro, Frenk and White �NFW�
and is atained in cosmological simulation quite well. . On the
other hand, for the cold collapse simulations, the bound state
follows the stationary solution of the Jeans equation under
the assumption of the LV relation, which also has the prop-
erty of infinitely spread and finite mass �11,14�. So far the
global stability of two solutions has not been compared be-
cause they are the solutions under different constraints. Our
analysis of gravitational fugacity may give a hint for the
stability of these two sorts of solutions. As long as we exam-
ined, the cuspy density profile which does not follow the LV
relation, is a presaturated state which goes to the LV state if
the central isolated region is activated. In actual astrophysi-
cal systems, such a transition from the presaturated state to
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FIG. 9. �Color online� The
time evolution of the LV distribu-
tion after the LV ratio of one shell
is artificially shifted from the criti-
cal value after the system reaches
the LV state. Here the LV ratio
around Mr=0.5Mtot is shifted
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the equilibrium state starting from
a homogeneous sphere with Vin

=0.0 and with N=5000. The sys-
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critical state b=1 within 10tf f
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moments are also depicted in �b�
and in �d� for the upper and lower
shift of b, respectively. The par-
ticles are smoothly spread toward
other shells for both of the cases.
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the LV stable state may happen through the sequence of
merging processes. In fact, we found that the system ap-
proaches the LV state for the merging process, although the
time scale of relaxation is much longer than those of cold
collapse simulations. The effect of such sequence of merging
on the LV criticality remains as a future work.

From astronomical points of view, observing the LV rela-
tion may give the hint for merging history of dark matter
halos around galaxies. In fact, An and Evans proposed the
general form of the phase-space distribution function follow-
ing the LV relation and utilized them to evaluate the relation
between the cusp slope of the dark matter halo in the galaxy
and the anisotropy of �-ray flux radiated from the galactic
center �21�. Such observations may also reveal how well the
LV relation is attained in dark matter halos around galaxies.
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APPENDIX: GLOBAL VIRIAL RELATION

In Eq. �6�, Ra is a monotonic function of b for any fixed
value of a. Hence if Ra is constant and independent of the
position, b also becomes constant. This means that the local

velocity dispersion �2 becomes proportional to the local po-
tential everywhere. Assuming the spherical symmetry and
describing Eq. �2� with the cumulative mass Mr as the coor-
dinate in the radial direction, we obtain the relation

�2�Mr� = − b��Mr�/2. �A1�

Integrating both sides of Eq. �A1� with Mr in the full of the
bound region, we obtain the relationship between total ki-
netic energy K and total potential W as

2K = − bW , �A2�

where K and W are the total kinetic energy and total potential
defined as

K =
1

2
�

0

Mtot

�2�Mr�dMr,

W =
1

2
�

0

Mtot

��Mr�dMr, �A3�

respectively. Hence the LV ratio b is identified with the glo-
bal virial ratio V defined as

V = −
2K

W
, �A4�

which means that b becomes equal to 1 for a globally virial-
ized state.
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